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M c t  It is shown that, to any quasiprobability distribution corresponding to a given 
density operator, one can associate a class of positive distributions in an extended space. 
In situations when the quasiprobability distributions are singular, these distributions are 
shown to provide regularized versions thereof. The positive distribution introduced by 
Dmmmond and Gardiner in the context of the GlauLwSndarshan P-representation is 
shown to arise as a special case. One can thus associate a positive distribution to the Wigner 
function such that its moments giw the averages of Weyl-ordered operatorj with respea 
to the given density operator. It is also found that one can auodate to the Glauber- 
Sudarshan P-function, a distribution in the extended space which, though not positive, 
interestingly, involves the Wigner function. A measurement scheme which directly yields 
thee positive distributions is presented. 

Quasiprobahility distributions have, over the years, proved to be of immense value in 
the study of quantum mechanical systems. They are useful not only as computational 
tools, but can also provide insights into the connections hetween classical and quantum 
mechanics. These quasiprobability distributions pennit one to express quantum mechan- 
ical averages in a form similar to classical averages. The prominent one  among these 
quasiprobability functions are the Wigner function [l, 21, the Q-function [3] and the 
P-function of Glauber [4] and Sudarshan [5].  These quasiprobability distributions were 
introduced with definite objectives in mind and derive their importance in quantum 
physics from certain specific properties they possess. The Wigner function was originally 
introduced [l] to study quantum corrections to classical statistical mechanics. Since 
then, it has found many useful applications in areas such as quantum optics, quantum 
cosmology, quantum chaos and, more recently, in the context of quantum mechanical 
histories [6]. Its importance lies in the fact that it plays, in the quantum domain, the 
role of the classical phase space density and hence provides a bridge between quantum 
and classical physics. The importance of the Q-function accrues from the fact that, 
unlike the Wigner function, it has the virtue of being always positive. The Glaube- 
Sudarshan P-function, in the context of quantum optics, derives its importance from 
the fact that its moments are directly related to the quantities measured by photo- 
detectors [7]. Each quasiprobability distribution has associated with it a definite rule 
for operator ordering-the moments of the quasiprobability distributions yield the 
expectation values of operators ordered according to a specific prescription. Thus, while 
the moments of the Wigner functions yield expectation values of operators ordered 
according to the Weyl or symmetric ordering [SI, those of the P- and the Q-function, 
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respectively, yield the expectation values of normally and anti-normaIly ordered opera- 
tors. A unilied treatment of the quasiprobability distributions and the associated 
ordering prescriptions was given by Agarwal and Wolf [9] and by Cahill and Glauber 
[IO]. In particular, corresponding to,a given density operator p ,  Agarwal and Wolf 
defined a class of quasiprobability distributions @‘“)(a, a*) given by 

@@)(a, a*)=- dz/3 Tr[pD(/3)] exp(-t(l-Z~)lp1~) exp(ap*-a”P) (1) 

D(p)  = exp(pa* -p*g  (2) 

8 2  ‘ S  
where 

and a is a real number 61. This class of quasiprobability distributions contain the P- 
function, ‘the Wigner function and the Q-function as special cases-they correspond to 
the values a= 1, 1/2, and 0 respectively. Agarwal and Wolf, in their work [9, P2187, 
appendix A] also showed that the quus$robability distributions @(’)(a, a*) with a 60, 
for any density operator are aZways positiue. For the more interesting range of values 
ofa, l>a>O whichcontainstheWignerand theP-function thepositivity~f@(~)(a, a*) 
is, in general, not guaranteed. The main purpose of this work is to develop a scheme 
for positivization of these quasiprobability functions. 

Positioization by smearing. We begin by noticing that the quasiprobability functions 
defined in (1) are related to each other by the following formula 

@‘“-b)(a, a*)=- d2P @‘“’(/3, p*) exp -- 
Irb ‘ J  [ ‘a,””] (3) 

whereb>O.Itisworthnotingthatforall b>a,a-b$OandfromtheresnltsofAganval 
and Wolf it follows that @“-b’(a, a*) is positive. This can, in fact, also be easily 
proved by noting that the expression multiplying @‘”(p. p*) in the RHS of (3) is simply 
the quasiprobability distribution @$‘-“(/3, /3*) corresponding to the density operator 
p’ given by 

p’= D ( a ) p d ( a )  (4) 

po = (1 - e-’) exp( - satu) ( 5 )  

@(a- b)(a, a*) =Tr(pp’) =Tr(pD(a)poDt(a)) (6) 

where 

b - a = (ee- I)-’ 

In view of tbis, the RHS of (3) is easily seen to be just Tr(pp’) 

which, since both p and p‘ are positive definite operators, is always positive. 
The relation (3) thus suggests a possible scheme of positivization. It associates with 

any quasiprobability distribution @‘“(p, p*), 1 >a>O, a positive distribution 
q%a, a*) 

by smearing the former by the function (I/xb) exp(-la-PIZ/b) with b>a. (From this 
point of view, the quasiprobability distributions @‘“(a, a’) for a 6 0  can be interpreted 
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as smeared versions of @(")(a, a*) with a lying in the range 12a>O.) Consider, for 
instance, the density operators 

(1) p=ln)(nl describing a Fock state, 
(2) p=S(z)lO)(OISt(z); S(z)=exp[zat2-z*d], z=IzI eie describing a squeezed 

vacuum, which have highly singular P-functions. The corresponding smeared distribu- 
tions, respectively, turn out to be 

Psm(a, a*)=- 1-- exp(-la12/b)L.(-Ia12/b(b-1)) b > l  ( 8 )  
b l (  3 

and 

PJa,  a*)=[b2+(Zb-1) ~inh~1zl]-"~ 

1 (9) 
{4(b + sinh21zl)l a[* - sinh21zl (a2 e"+ a*' e")} 

bZ+(2b- 1) sinh'lzl 

which have all the properties of a classical probability distribution. 
It is evident from above discussion that this scheme of positivization is amenable 

to further generalizations. Instead of the thermal density operator pa in (4), one could 
use any other suitable density operator to generate a smearing function which would 
yield a positive distribution @g(a,'a*) corresponding to a given @'"'(a, a*). Density 
operators io of the form exp[ - (quadratic form in cif and li)] are particularly useful 
for this purpose [6].  

This scheme of positivization and regularization by smearing, though widely used 
in the literature, particularly in the context of the Wigner function, suffers from the 
drawback that the moments of and those of the positivized @% bear no simple 
relationship. It is thus better to regard the positivized @g as a new distribution rather 
than a positivized version of its parent. 

Positivization by doubling !he number of complex varidles. In an important work, 
D m m o n d  and Gardiner [ 111 proposed a scheme of positivization of the Glauber- 
Sudarshan P-function by doubling the number of complex variables. This positive P 
representation has found numerous applications in quantum optics [ 11-1 31. Drummond 
and Gardiner show that, to a given density operator p .  one can associate a manifestly 
positive distribution @'(a, p, a*, p*) in two complex variables such that its moments 
<p", a") are equal to the moments <a*"a") of the Glauher-Sudarshan P-function 
@("(a, a*) corresponding to the given p ,  i.e. 

Sd2a(a*)"(a)"P(a, a*)= d2a d'p(/3*)"(a)"@'(a, p, a*, p*). (10) I S  
The distribution @'(a, p, a*, p*) is explicitly given by 

(1 1) 

One can thus associate a positive distribution to a given p such that its moments (p"a") 
reproduce the averages of the normally ordered operators with respect to p. 

In this work we show that we can define a positive distribution corresponding to 
any quasiprobability function @"(a, a*) such that their moments are related as in 
(10). In other words, corresponding to any operator ordering, we construct a positive 

1 
@'(a, p, a*, p*) =z exp[-ala - pl'lQ(f(a + P),i(a* + p*)). 



L42 Letter to the Editor 

distribution in two complex variables such that its moments reproduce the averages, 
with respect to p of operators ordered according to the chosen rule. 

Consider the moments of a quasiprobability distribution @'(a, a*) 

in (12) and changing the order of integration, we obtain 

where 

and satisfies the normalization condition 

l d 2 a  /d2P P(asb)(a, P ,  a*, P*)=1. 

Using the relation (3) we can write. (10) as 

Thus for a given value of a we have a class of distributions Po*') which satisfy (14) 
and (16) for all values of b>O. In the following, we show that this freedom in the 
choice of b can be exploited to associate, to each quasi probability function @@), a class 
of manifestly positive distributions @") satisfying (14) and (16). 

Special cases. 

Setting a=b= 1 in (17), we obtain the Drummond-Gardmer representation for the P- 
function. 

(i) a= b= 1 : Drummond-Gardiner representation 

1 
4z @'-l)( a ,  P ,  a*,@*) = - exp[- a -PI '1 Q( f (a  + P ) ,  4 (a* + p*)). (1 8) 
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(ii) a=b= t/2: positivized Wigner function 
For these values of (I and b we obtain the positive distribution 

@'L1/')(a, p, a*, p*)=--exp[-4ia - p i ' J ~ ( i ( ~  +p), f(~*+p*)) 

which we will, hereafter, refer to as the positivized Wigner function. The moments 
(/?'""") of this distribution, by construction are equal to the moments {a-a") of the 
Wigner function W(Q, a*). 

For a=b=O we naturally obtain 

(19) 
1 
2R 

(K) a=O, b=O 

@*o)(a,p, a*, p*>=8'(~-j3)Q(u, a*). (20) 

(iv) a = b  
If a is chosen equal to 6, we obtain 

The distributions @")(a, p, a-, p'), being equal to the Q-function multiplied by a 
positive function, are manifestly positive for all d u e s  of U. The dculation of @"p' 

corresponding to a given density operator just involves the computation of the @- 
function. The distributions .9(Oa' for the density operator p=lm)(ni. For exampie, are 
given by 

It is worth noting that, while the quasiprobability distributions @(") themselves are 
related to each other by (3), the corresponding positive distributions 9"'ap' are related 
to each other in a rather simple way owing to the fact that the dependence on Q appears 
only through the factor multiplying the @function. Thus, &P('/z'fl) is related to .#"-" 
as follows 

(23) 

In this case, since a-b is negative, U)(*-*) given by (1) is always positive and so are 
for any value of b>a. Combining this with the case (iv) we find that, for a given 

Q, we have a class of positive distributions @'("*s) with baa. 

In this case (12) assoCiates, to a U)(*), a which involves the quasi probability 
function @(*-'). Though the 9""') in this case stilfreproduces the moments of &'), its 
positivify is not guaranteed. However it does provide interesting interrelations between 
guasiprobabaity distributions. Thus, for instance, for (I= 1 choosing 6- 1/2 one obtains 

~ ( ~ . ' ' ~ ) c a , p ,  a*, ~*)=--exp[-fla-~1~1~(t(a+p), f(a*+B*)). , 

which associates, to the Ffunction, a quasidistribution in an extended space which 
involves the Wigner function. 

sZi"'L'p'(a, p ,  a*, p*)=2exp[- f~a-p1*~~( '") (a ,  p, a*, p*) 
(v) b>a 

(vi) a>b 

(24) 
I 
2R 
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Measurement ofthe positiue distributions @.‘)(a, a*, p ,  p*), baa .  A scheme for the 
measurement of the positive distributions #“b’(a, a*, p, p*)  can be developed along 
the lines of that proposed by Arthurs and Kelly [I41 and by Braunstein et a1 1151 in 
the context of the Q-function and the positive P representation respectively. Consider 
a system interacting with a set of four detectors according to the instantaneous 
Hamiltonian 

&t=G(t)[%$i +bz)+$($3+$dl (25) 

where i,$ and ij, $, denote the position and the momentum operators for the system 
and the detectors respectively. Given the initial state of the system and the detectors, 
the quantity of interest is the probability P(xl, xz, x3, x4) that the detector coordinates 
take values xI , xz, x3 and x4 after the detectors have interacted with the system. This 
joint probability, by definition, is given by 

(26) 

(27) 

P ( x I ,  XZ, ~ 3 ,  ~4)=(tJS(ii -XI)S(~Z-XX~)S(~~-X~)S(~~-X~)LI) 
where (with d = 1 hereafter) 

u = ~ x P ( - ~ I w ~ + $ ~ )  +$i$3+j4)1) , ,  

and <. . .> denotes the average with respect to the initial density operator p(0) .  

that p(0)  = p.pd and that p d  = I v>( 
We further assume that initially the system and the detector are uncorrelated so 

with 

<xi, x,, x,, x41 v>=- exp -- ( x ~ + x ? + x $ + X ~ )  . 
nb 2’ [ ;  (28) 1 

HereXI=(x l+x2) /2 ,X3=(x3+x4) /2 ,XZ=(xI -x2) /2  andX4=(x3-x4)/2. XI and X3 
can be looked upon as the centreof-mass coordinates  and^ XZ  and X4 as the relative 
coordinates. In terms of the position variables (28) implies that the initial wavefunction 
of the detector is chosen to be 

We further assume that b< 1 i.e. all the detectors are identically prepared in a squeezed 
state characterized by the parameter b. With these assumptions regarding the initial 
state of the detectors, a simple computation shows that 

~ ( x l ,  xz, x3, x,) =@OL)(a, p, a*, p*) 

(a + P )  =Jz(xI+ iu,) 

(30) 

(31) 

where 

(a - p )  = ZJz(Xz+ X4) 
and 

4 

The situation considered by Braunstein ef af 1151 corresponds to b = l .  Thus we see 
that, if the detector is initially prepared in the state (29) the statistics of the four 
detectors directly gives the positive distribution @“.’)(a, /3, a*, /3*) corresponding to 
the initial density operator of the system. If b is chosen to lie in the range 1 aba1/3 ,  
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the outcome of the above measurement would be the distribution @""(a, p, a', p*) 
with a lying in the range 1 2 ~ 2 0 .  Thus the choices b=1/3, I / d ,  and 1 yield the 
distributions 9(0*''3), S'"'z"'fi) and 9'('*') respectively. 

To conclude, we have shown how a class of quasiprobability functions may be 
positivized. Our work may be viewed as a generalization of that of Drummond and 
Gardiner on positivization of the Glauber-Sudarshan &function. The class of quasi- 
probability functions considered here includes the Wigner function as well. In contrast 
to the other positivization schemes such as smearing, the moments of these positive 
distributions are directly related to those of the quasiprobability distributions and hence 
to the averages of operators ordered according to a specific prescription. The positive 
distributions constructed in the present work also provide a way to regularize the 
quasiprobability distributions when the latter become singular. A measurement scheme 
which directly yields some of these positive distributions is also presented. 

SC is grateful to Professor C L Mehta and Ms P Shanta for discussions 

References 

[I] Wigner E P 1932 Phys. Rev. 40 749 
[2] Hillery M, O%onnell R F, Scully M 0 and Wigner E P 1984 Phys. Rep. 106 121 
[3] Kano Y 1964 J.  Phys. Soc. J u p  19 1555 

[4] Glauber R J 1963 Phys. Reu. Lett. 10 84 
[5] Sudarshan E C G 1963 Phys. Rev. Lett. 10 277 
1.51 Halliwell J J I992 Phys. Rev. D 46 1610 
[7] KIauder J R and Sudarshan E C G 1968 Fundumenralr ofQuunrum Oprics (New York: Benjamin) 
[SI Weyl H 1931 Theory of Groups und Quunrum Mechunier (New York: Dover) 
[9] Aganval G Sand Wolf E 1970 Phys. Rev. D 22161,2187,2206 

Mehfa C L and Sudarshan E C G 1965 Phys. Reu. 138 274 

[lo] Cahill K E and Glauber R J 1969a Phys. Reu. 177 1857, 1882 
[ I l l  Drummond P D and Gardiner C W 1980 J. Phys. A: Math. Gen. 13 2353 
[I21 Drummond P D, Gardiner C Wand Walls D F 1981 Phys. Rev. A 24 914 
[I31 Gardiner C W 1983 Hun&ookofStochustic Merho& (Berlin: Springer) p408 
[I41 Acthurs E and Kelly J L Jr 1965 Bell. Sysf. Tech. J. 44 725 
[I51 Braunstein S L, Caves C M and Milbum G J 1991 Phys. Reo. A 43 1153 


